

JP7114616

Biblio Page 1

SLIP DOCUMENT INFORMATION SYSTEM

Patent Number:

JP7114616

Publication date:

1995-05-02

Inventor(s):

SHIMA YOSHIHIRO; others: 07

Applicant(s)::

HITACHI LTD

Requested Patent:

JP7114616

Application Number: JP19930262100 19931020

Priority Number(s):

IPC Classification:

G06K9/00; G06F19/00

EC Classification:

Equivalents:

Abstract

PURPOSE:To examine the adequacy of entry contents by discriminating the kinds of the formats of plural slip documents, and automatically setting a read area and performing character recognition.

CONSTITUTION: The slip document information system is constituted by connecting a sorting station 103, a storage station 101, a recognition station 105, a correction station 106, and a retrieval station 107 to a network 100. Consequently, plural slip documents can be read. Further, the adequacy of entry contents is examined and the entry contents of a slip can automatically be inspected. Paper documents can automatically be sorted to reduce the sorting operation.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-114616

(43)公開日 平成7年(1995)5月2日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G06K 9/00 G06F 19/00 K 8623-5L

8724-5L

G06F 15/22

審査請求 未請求 請求項の数11 OL (全 19 頁)

(21)出願番号

特願平5-262100

(22)出願日

平成5年(1993)10月20日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72) 発明者 鳴 好博

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 羽田野 英一

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

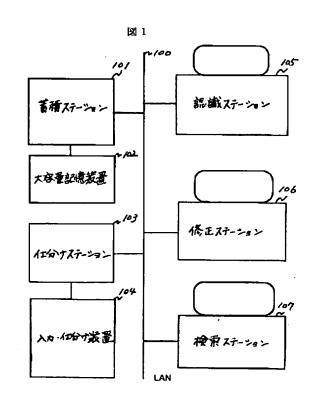
(72)発明者 丸川 勝美

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 弁理士 小川 勝男

最終頁に続く


(54)【発明の名称】 伝票文書情報システム

(57)【要約】

【目的】 複数の伝票文書の様式の種類を識別し、読み 取り領域を自動的に設定し文字認識を行い、記載内容の 妥当性を検定することにある。

【構成】 伝票文書情報システムの構成は、ネットワー ク100に、仕分けステーション103、蓄積ステーシ ョン101、認識ステーション105、修正ステーショ ン106、検索ステーション107が接続されている。

【効果】 複数の伝票文書を読み取ることができる。ま た、記載内容の妥当性を検定しており、伝票の記載内容 を自動的に点検することができる。紙文書の仕分けを自 動的に行なうことができ、仕分け作業を低減するという 効果がある。

【特許請求の範囲】

【請求項1】診療報酬請求明細書の少なくとも画像入力、蓄積、検索、及び内容点検を行なう伝票文書情報システムにおいて、当該明細書の様式の種類を識別する手段と、当該様式の種類に応じて読み取り領域を抽出する手段と、読み取り領域を設定し文字認識を行なう手段と、当該認識結果のデータを基に記載内容の妥当性を検定する手段とを有することを特徴とする伝票文書情報システム。

【請求項2】請求項1記載において、前記明細書の様式の種類を識別する手段は、明細書の種類をキー入力する手段と、様式の種類を予め辞書データとして格納する手段と、入力された明細書文書より様式データを抽出する手段と、当該辞書データと抽出した様式データとを照合する手段を有し、当該キー入力した明細書の種類により、辞書データとの照合を限定することを特徴とする伝票文書情報システム。

【請求項3】紙文書の少なくとも画像入力、蓄積、及び 検索を行なう伝票文書情報システムにおいて、伝票文書 の種類を識別し文字認識を行なう手段と、認識結果によ って整理番号を紙文書に打番する手段と、当該文書の種 類に従って紙文書の仕分けを行なう手段とを有すること を特徴とする伝票文書情報システム。

【請求項4】紙文書の少なくとも画像入力、蓄積、及び 検索を行なう伝票文書情報システムにおいて、伝票文書 の種類を識別し文字認識を行なう手段と、当該認識結果 に従ってバーコードの印字を紙文書の表面に行なう手段 とを有することを特徴とする伝票文書情報システム。

【請求項5】紙文書の少なくとも画像入力、蓄積、表示、及び検索を行なう文書情報システムにおいて、文書画像の複数領域を表示領域として設定する手段と、当該複数領域内において読み取り領域を抽出する手段と、当該表示領域の画像と認識結果を画面に同時に表示する手段と、認識結果を画面を介して修正するときに読み取り領域の画像を拡大表示する手段とを有することを特徴とする文書情報システム。

【請求項6】紙文書の少なくとも画像入力、蓄積、検索、及び内容点検を行なう伝票文書情報システムにおいて、伝票文書の様式の種類を識別する手段と、当該様式の種類に応じて守秘内容の記載された領域を抽出する手段と、当該守秘領域の画像をマスクして表示する手段と、使用者に付与されたパスワードのレベルにより当該マスクの解除、及び設定を行なう手段とを有することを特徴とする伝票文書情報システム。

【請求項7】紙文書の画像入力を行なう伝票文書情報システムにおいて、入力された伝票文書画像から枠線を抽出する手段と、標準的な伝票文書の枠線を登録する手段と、抽出した枠線と類似する枠線を登録データから選択する手段と、当該選択した登録枠線と抽出枠線を画面に同時に表示する手段とを有し、伝票文書を登録すること

を特徴とする伝票文書情報システム。

【請求項8】紙文書の少なくとも画像入力、蓄積、検索、及び内容点検を行なう伝票文書情報システムにおいて、伝票文書の読み取り領域を抽出する手段と、読み取り領域内において文字認識を行なう手段と、認識結果の数値データが予め設定された範囲内にあるかどうかを判定する手段と、当該判定結果に従って伝票文書を蓄積する手段とを有し、当該範囲内にあると判定された伝票文書画像を選択し、当該画像のみを蓄積、及び検索することを特徴とする伝票文書情報システム。

【請求項9】ネットワークを介して紙文書の仕分けを行なう文書情報システムにおいて、紙文書の表面画像を入力する入力ステーションと、入力した画像の種類を識別する認識ステーションと、識別結果に従って紙文書を区分する仕分けステーションと、画像を保管する蓄積ステーションを備え、ネットワークを経由して画像データ、当該種類データ、並びに仕分け制御情報を伝送することを特徴とする文書情報システム。

【請求項10】紙文書の画像を入力し、当該紙文書画像を認識して種類を識別する仕分けステーションであって、紙文書を設定するホッパと仕分け後の紙文書を格納するスタッカを有し、スタッカが一杯になると警告音を発生し仕分け処理を一時停止することを特徴とする仕分けステーション。

【請求項11】文書の少なくとも画像入力、蓄積、検索、及び内容点検を行なう文書情報システムにおいて、文書画像とその整理番号を格納する手段と、文書の整理番号を指定することによって整理用バーコードを求める手段と、紙文書の表面のバーコードを読み取る手段と、指定されたバーコードを付与された文書を選択する手段とを有することを特徴とする文書情報システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は様式や書式の異なる複数 種類の伝票(例えば、診療報酬請求明細書等)の読み取 り、仕分け、保管、検索などを行なう伝票文書情報シス テムに関する。

[0002]

【従来の技術】文書の様式は、記載項目及び項目の順番を規定するが、その絶対的な位置座標、寸法を規定しない。文書の書式は、記載項目及び項目の順番を規定するだけでなく、その絶対的な位置座標、寸法を規定している。従来の光学的文字認識装置では、文書の書式をフォーマットデータとして予め設定しており、文書の各項目の絶対的な位置座標、寸法が規定されている紙文書を読み取ることができた。しかしながら、様式のみが規定されている文書、例えば、法令文書などを読み取ることはできなかった。

【0003】従来の伝票を読み取る文書情報システム は、特開昭56-11573号公報(特願昭54-87 338号 昭和54(1979)年7月10日出願、発明者:香川正幸、出願人:富士通株式会社)に述べられているように、伝票に予め入力すべき項目を指示するマーク記入領域を設け、当該領域に記入されたマークを読み取ることによつて、伝票上の所定領域を読み取ることによつて、伝票上の所定領域を読み取ることによっため当該記入領域のが出版を設けているため当該記入領域を設けているため当該記入領域を新たに用意する必要があるため、既存の各種伝票をそのまま読み取ることができないという問題がある。 従来のようによいるできないという問題があるによった。 とは法令上様式が規定されているため、認められず、マーク記入領域を設けることは法令上様式が規定されているため、認められず、マーク記入領域のない当該様式を書を読み取ることはできないという問題があった。

【0004】また、従来の文書画像のファイル方式は、特開昭59-14070号公報(特願昭57-123460号 昭和57(1982)年7月15日出願、発明者:江尻公一、出願人:株式会社リコー)に述べられているように、中間調画像である写真や2値図形画像である棒グラフを含む文書の領域から特徴パラメータを抽出し、領域の画像と関連付けて記憶する画像ファイル方式では、写真と棒グラフの識別を行なうことが述べられているだけであり、伝票のように罫線並びに罫線からなる枠と文字列からなる文書を識別することは述べられていない。また、伝票の文字列を文字認識することや、文書の領域を守秘の程度によってマスクするファイル方式について考慮されていない。

【0005】また、定形的な入力文書に対して文書の種類を自動的に識別し、すでに格納された文書と同一の分類コードを与えるファイリング方式が、特開昭61-75477号公報(特願昭59-196616号、昭和59(1984)年9月21日出願、発明者:中野康明、藤沢浩道、藤縄雅章、出願人:株式会社日立製作所)に述べられている。しかしながら、この従来方式では、画像を格納することが主であり、読み取り領域を設定し文字認識を行なうことや、当該認識結果のデータを基に記載内容の妥当性を検定することができない。

[0006]

【発明が解決しようとする課題】上記各従来技術は、入力した紙文書そのものに対して整理番号若しくはバーコードを付与することが記載されておらず、蓄積した画像ファイルから所望の文書画像を表示、印刷することはできるが、原本である紙文書そのものを探索することは困難であり、原本を探す作業は多くの人手が必要な作業であった。また、紙文書ぞのものを仕分けすることが考慮されておらず、原本の分類、整理、収納に多くの人手を

要していた。

【0007】また、上記各従来技術では、蓄積した文書画像を表示、印刷する場合、守秘項目について考慮されておらず、例えば、文書にプライベートな内容や、ビジネス上重要な情報が記載されている場合でも検索結果の画像を画面にそのまま表示するか、若しくは、画像単位ごとに全面の表示を禁止するかのいずれかであり、文書の部分領域を守秘レベルに応じて見ることができなかった。

【0008】また、上記各従来技術では、入力した紙文書はすべて蓄積することが前提であり、内容によって、取捨選択して蓄積することは考慮されていない。このため、大量の文書を蓄積することとなり、小規模のファイルシステムでは記憶装置の容量を超えるという問題があった。

【0009】本発明の第1の目的は複数の伝票文書の様式の種類を識別し、読み取り領域を自動的に設定し文字認識を行い、記載内容の妥当性を検定することにある。

【0010】本発明の第2の目的は認識結果によって整理番号若しくはバーコードを紙文書に印刷し、紙文書の仕分けを行なうことにある。

【0011】本発明の第3の目的は文書画像から守秘内容の記載された領域を抽出し、守秘領域の画像をマスクして検索結果の表示、印刷を行なうことにある。

【0012】本発明の第4の目的は文書の記載内容によって蓄積の必要性の有無を自動的に判定し、記憶領域を節約することにある。

【0013】本発明の第5の目的はネットワークを介して認識、仕分け、蓄積を行なう文書情報システムを提供することにある。

[0014]

【課題を解決するための手段】上記第1の目的を達成するために、文書画像から様式の種類を識別して記載内容を読み取り、読み取り結果が記載項目ごとに登録している条件を満足するかどうかを判定するようにしたものである。

【0015】また、上記第2の目的を達成するためには、認識結果により仕分け機構並びに印刷機構を制御するようにしたものである。

【0016】また、上記第3の目的を達成するためには、文書画像から項目の記載された部分領域を自動的に抽出し、守秘領域に対してアクセスのためのパスワードを付与するようにしたものである。

【0017】上記第4の目的を達成するためには、記載 内容例えば点数を読み取り、点数が一定値より大きい文 書のみ、その表面画像を蓄積するようにしたものであ る。

【0018】上記第5の目的を達成するため、ネットワークに画像を圧縮して伝送するとともに、認識結果を伝送し、そのデータによってネットワークに接続された仕

分けステーション、蓄積ステーションを制御するように したものである。

[0019]

【作用】複数種類の伝票に対してその表面画像を入力し、伝票文書の様式の種類を識別する。そして、様式の種類に応じて読み取り領域を抽出し、文字認識を行なう。認識結果のデータを基に記載内容の妥当性を予め設定している判定条件に従い検定する。さらに、認識結果によって整理番号を紙文書に打番若しくはバーコードを印字し、文書の種類に従って紙文書の仕分けを行なう。また、文書の種類に応じて守秘内容の記載された領域を抽出し、守秘領域の画像をマスクして表示できるようにする。

[0020]

【実施例】以下、本発明を図面を用いて詳細に説明する。図1は本発明の一実施例である伝票情報システムの 構成を説明する図である。

【0021】ネットワーク100には、入力・仕分けス テーション103、蓄積ステーション101、認識ステ ーション105、修正ステーション106、検索ステー ション107が接続されている。入力・仕分けステーシ ョン103は計算機より構成されている。当該ステーシ ョン103には入力・仕分け伝票文書の画像入力と伝票 文書の仕分けを行なう入力・仕分け装置104が接続さ れている。当該装置には、文書を設定するホッパ、仕分 け後の文書を格納するスタッカ及びその制御部があり、 さらに、画像を入力するための光学的撮像素子、照明装 置等の光学系が具備されている。ここでは、入力した画 像をデータ圧縮し、当該ステーション103を介してネ ットワーク100に画像データを送出する。また、ネッ トワーク100から認識結果を受け取り、これを仕分け 制御信号として文書の仕分けを行なう。蓄積ステーショ ン101は計算機から構成され、光ディスクもしくはア レイディスク等からなる大容量記憶装置102が接続さ れており、認識結果のデータ並びに入力された画像の蓄 積を行なう。蓄積ステーション101では、認識結果に 基づいて蓄積すべき文書を選別することができる。ま た、守秘内容の記載されている部分領域に対して、アク セス情報を付与して当該記憶装置102に蓄積する。認 識ステーション105では、ネットワーク100を介し て送られてきた画像に対して、伝票文書の種類を求める シート識別処理を行ない、項目に記載されている文字列 の認識を行なう。修正ステーション106では、認識結 果の修正を画面を用いて対話的に行なう。ここでは、読 み取り領域を拡大して画面に表示し、修正を容易にして いる。検索ステーション107では、蓄積ステーション 101に蓄積された伝票画像をネットワークを介して検 索することができ、項目に記載されている内容を手掛か りに所望の伝票を探索し、画面に表示することができ る。この時、守秘内容の記載されている部分領域に対し

てアクセス情報が付与されており、使用者のアクセスの レベルにより当該守秘項目をマスクして表示することが できる。

【0022】図2は伝票文書の処理フローを説明する図 である。伝票文書の一例として、診療報酬請求明細書 (レセプト) の処理フローを示す。レセプトに記載され た主要項目についてデータを入力し、計算機により資格 記録の確認処理を行なう。本処理フローでは、先ず、ス テップ200においてレセプトを入力用のホッパーに設 定する。次いで、ステップ201でレセプトの仕分け処 理を行なう。ここでは、レセプトの種類として、外来分 レセプト210と入院分レセプト211にその様式を識 別して仕分けを行なう。ステップ202では、初期情報 を入力する。ここでは、初期情報として、レセプトの処 理を各県単位に行なうための地域属性として、自県と他 県の区別を入力する。また、レセプトの処理を行なう事 務所名、診療区分、整理番号の初期値を登録する。な お、入院分レセプト211については、整理番号をステ ップ208で打番する。次いで、ステップ203、ステ ップ204で読み取りを実行する。ステップ203は、 伝票の一括処理を行なうバッチ読み取り処理であり、認 識結果の正常分ならびに不読(リジェクト)分を別のス タッカーに格納するとともに、整理番号を印字する。ス テップ204は、逐次修正読み取りの処理であり、認識 の結果リジェクトされたレセプトに対して、修正画面を 介して対話的に認識結果を修正する。ステップ203で 認識された正常分のデータと、ステップ204で修正さ れ正常となったデータはフロッピーディスク等に格納す る。また、ステップ203でリジェクトとなったレセプ トは、別のスタッカーに格納されることになる。なお、 入院分レセプト並びにステップ203のリジェクト分を まとめてステップ209でパンチ作業を行なう。レセプ トに記載の診療内容をもとに、ステップ207に示すよ うに資格記録確認処理等の機械処理を行う。ここでは、 高額な点数が記載されているレセプトのみを選択してス テップ205で光ディスクに格納している。ステップ2 07の資格記録の確認処理では、ステップ205で光デ ィスクに格納されたレセプトの検索206を行ない、所 望のレセプトを画面に表示して資格記録の確認を行な

【0023】図3は伝票文書の画像入力、蓄積、検索、内容点検を行なうシステムの処理フローである。ステップ300で伝票文書の表面画像を入力し、ステップ301で伝票の様式の種類を識別するシート識別処理を行なう。当該シート識別の詳細処理フローは図4にて後述する。次いで、ステップ302において、当該様式の種類に応じて読み取り領域を抽出し、読み取り領域を設定する。当該読み取り領域改定ステップ302の詳細処理フローは図9にて後述する。ステップ303では読み取り領域内において文字認識を行ない、ステップ304で当

該認識結果のデータを基に記載内容の妥当性を検定する。当該ステップ303の詳細処理フローは図10にて 後述する。

【0024】図4は、ステップ301のシート識別処理 の詳細処理フローを示す図である。ここでは、入力した 画像から枠及び文字行を抽出し、予め標準的な文書から 登録したシート識別用辞書430とのマッチングを行な う。先ず、ステップ400では入力画像から微小なノイ ズを除去する。次いで、ステップ401で黒画素の連続 する線分であるランを用い罫線を抽出し、ステップ40 2で当該罫線の傾き角を算出する。ステップ403で画 像を当該傾き角だけ回転させ、回転修正を行なう。そし て再び、ステップ404で罫線を抽出する。図6は、こ の一連の処理により画像から水平罫線および垂直罫線を 取り出し、その始点座標、終点座標を算出する過程の説 明図である。伝票画像600に対して、601は水平野 線602、603、604を抽出した結果である。ま た、610は垂直罫線611から616を抽出した結果 である。ステップ405では文字のつながりである文字 行を長方形の形で抽出し、その角の座標を求める。文書 の水平並びに垂直方向の位置ずれを修正するため、ステ ップ406で文書の基準点を求める。ステップ407で は、水平罫線ならびに垂直罫線から枠の角に相当する交 点の座標を算出する。各罫線は直線式で表現できるた め、簡単に直線の交点座標を求めることができる。ステ ップ408では、求めた交点座標に対して、大きさの正 規化を行なう。さらに、ステップ409では、交点を基 に枠を生成する。図7は水平罫線及び垂直罫線から交点 を求め、次いで枠を生成する過程を説明する図である。 水平罫線602~604、並びに垂直罫線611~61 6をもとにその交点710~723を算出する。そし て、交点を順次辿り枠701、702~706を生成す る。図4のステップ410では、枠のマッチングを行な う。この時、シート識別用辞書430に格納されている 複数個の標準の枠とのマッチングを行なう。当該辞書4 30には、枠位置及び文字行の位置が予め登録されてお り、その登録のフローは、先ず、ステップ420で標準 の伝票画像を入力し、次いで、ステップ421で入力す べき枠及び文字行の位置を画面から指定する。ステップ 422では位置並びに回転の補正を行ない、辞書として 登録する。さらに、ステップ411では、文字行マッチ ングを行なう。この時、シート識別用辞書430に格納 されている複数個の標準の文字行とのマッチングを行な う。文字行マッチングの詳細は図8において後述する。 上に述べた枠マッチング410と文字行マッチング41 1によって求めた結果に従って、標準の伝票の内、もっ とも類似している伝票が有するシート種類番号をステッ プ412で決定する。さらに、ステップ413で、生成 した枠位置ならびに文字行の位置を出力する。また、ス テップ414でシート種番号を出力する。

【0025】図5は位置ずれ・回転・伸縮を有する認識 座標系を示している。伝票シート500に506で示す 枠罫線が存在している。認識座標系を伸縮の無い認識座標系 (Xr, Yr)511で、伸縮のある認識座標系 (Xm, Ym)512で表現する。これらの座標系は、センサと光学系からなる観測座標系である。また、フォーマットデータ生成用座標系 (Xf, Yf)513はシートの端を基準にした座標系であり、実物の寸法を表す 座標系である。伸縮の無い認識座標系で表現したシート内の目標点 (xr, yr)507は、認識座標系の原点510とフォーマットデータ生成用座標系の原点509とのずれ量 (dx, dy)と回転角 Θ により表現でき

[0026]

【数1】 $x r = d x + x f \cdot c \circ s \Theta + y f \cdot s i n \Theta$ $y r = d y - x f \cdot s i n \Theta + y f \cdot c \circ s \Theta$ ここで、 (x f, y f) はフォーマットデータ生成用座標系で表した目標点 507 の座標である。 さらに、伸縮のある認識座標系で表現したシート内の目標点 507 (x m, y m) は、伸縮率m x, m y を、

[0027]

【数2】 x m = m x · x r

ym=my・yr とすると、

[0028]

【数3】

 $x m = m (dx + x f \cdot c \circ s \Theta + y f \cdot s i n \Theta)$ $y m = m (dy - x f \cdot s i n \Theta + y f \cdot c \circ s \Theta)$ と表すことができる。シート内の読み取りでは、上式に従って、フォーマットデータを変換して画像にアクセスし文字認識を行なう。また、位置合わせ用基準点508 の認識座標系の値を伸縮の無い認識座標系(x r 0, y r 0)、伸縮のある認識座標系(x m 0, y m 0)で表す。また、フォーマットデータ生成用座標系の値を(x f 0, y f 0)で表す。位置ずれ量(d x, d y)は、【0 0 2 9】

【数4】 $dx = (1/mx) \cdot xm0 - xf0 \cdot cos$ $\Theta - yf0 \cdot sin\Theta$

 $dy = (1/my) \cdot ym0 + x f 0 \cdot s i n\Theta - y f$ $0 \cdot c \circ s\Theta$

で表すことができる。回転角のは罫線の傾きを基に検出する。次いで、伸縮率mx,myを求めるが、これは、例えば、一番外の黒線枠の横幅、縦幅を検出し、フォーマットデータの該当する横幅、縦幅と比較して算出する。さらに、位置合わせ用基準点の認識座標系における位置(xm0,ym0)を求め、フォーマットデータに予め設定している当該点の位置(xf0,yf0)(フォーマットデータ生成用座標系で表現)と比較して、位置ずれ量(dx,dy)を求める。シート識別では、伸縮のある認識座標系において検出した目標点の座標(x

m, ym) をフォーマットデータ生成用座標系 (xf, yf) に変換し、これをシート識別用辞書の書式の座標データと比較する。

【0030】文字行の相対的な位置関係を表現する方式を図29に示す。今、注目する文字行2900に対して、8方向の位置関係を表現している。方向を東西南北で表すと、注目する文字行2900の北方向2901には文字行2911がある。また、南方向2905には文字行2915が、東方向2903には文字行2913が、西方向2907には文字行2917が、それぞれある。さらに、注目する文字行2900の北東方向2902には文字行2912が、北西方向2908には文字行2918が、南東方向2904には文字行2914が、南西方向2906には文字行2916が、それぞれある。このように、注目する文字行に対して、8方向の位置関係を有する文字行を表現する。

【0031】図8はステップ411の文字行マッチング の処理方式を説明する図である。伝票文書の文字行の部 分領域の例を810、811、812に示す。文字行領 域810では、抽出した文字行を801、802、80 3示しているが、これらの相対的な位置関係は上下の南 北関係になっている。いま、注目する文字行を801と すると、文字行802は文字行801に対して南方向8 20にある。また、文字行802に対して、文字行80 3は、同じく、南方向821にある。一方、文字行領域 811の例では、文字行804、805、806の相対 的な位置関係は左右の東西関係である。文字行804に 対して、文字行805は東方向822にあり、文字行8 05に対して806も又、東方向823にある。さら に、文字行領域812の例では、斜め方向の位置関係に あり、文字行807に対して、文字行808は北東方向 824にある。また、文字行808に対して文字行80 9は、同じく、北東方向825にある。ステップ411 の文字行マッチングでは、このような文字行の相対的な 位置関係が予めシート識別用辞書430には登録されて おり、入力画像から抽出した文字行の相対的な位置関係 と合致するかどうかを判定する。

【0032】図9は図3のステップ302で示した読み取り領域設定処理の詳細処理フローである。先のシート識別のステップ301で得られたシート種番号をステップ900で入力する。次いで、ステップ901で読み取り領域ごとの処理に移り、ステップ902でシート種類ごとに登録されているフォーマットパラメータ910から、該当する読み取りのフォーマットパラメータを読み込む。ここで、フォーマットパラメートとしては、文字種、文字数、読み取りフィールドの位置が具備されている。ステップ903では、フオーマットパラメータから読み込んだ読み取りフィールド位置とステップ406で求めた基準点位置からの位置ずれ量を基に、読み取り領域を算出する。

【0033】図10はステップ303で示した読み取り 領域内文字認識処理の詳細処理フローである。ステップ 1000で読み取りフィールドごとに、ステップ100 1から1004までの処理を行なう。ステップ1001 では読み取り領域内の文字行を抽出する。ステップ10 01では、予め、読み取り領域内に印刷されている不要 文字を除去する。そして、ステップ1003で抽出した 文字行を一文字単位に分離する。ステップ1004で は、一文字ごとの文字認識を行なう。この文字認識は、 従来技術を用いて容易に実現できる。

【0034】図11は伝票文書を読み取り、当該読み取 り結果をもとに伝票文書を選択して蓄積する伝票文書情 報システムの処理フローを示す図である。ステップ11 00で文書がつきるまで、ステップ1101以下の処理 を繰り返す。ステップ1101で伝票文書の画像入力を 行なう。次いで、ステップ1102で、ステップ301 と同様のシート識別処理を行なう。次いで、ステップ1 103で同じく、読み取り領域を抽出し、ステップ11 04で読み取り領域内において文字認識を行なう。ステ ップ1105で、認識結果の数値データが予め設定され た範囲内にあるかどうかを判定し、もし設定された範囲 内にある場合は、ステップ1106で光ディスク等の記 憶装置に当該画像を蓄積する。もし、設定された範囲内 にない場合は、記憶装置に当該画像を蓄積しない。上述 の一連の処理をステップ1100で文書が尽きるまで行 なう。この処理により入力した紙文書はすべて蓄積する 必要はなく、記載内容によって、取捨選択して蓄積する ことができる。このため、小規模のファイルシステムで は記憶の容量を節約できるという効果がある。

【0035】伝票文書の画像入力、蓄積、検索、内容点検を行なう文書情報システムにおいては、使用者のアクセスレベルに応じて守秘領域の画像をマスクして表示する。図12は伝票文書画像から守秘領域を登録する処理フローを示す。ステップ1200で画像を入力し、ステップ1201でシート識別処理301を行なう。そして、ステップ1202で守秘領域を抽出する。ここでは、先のシート識別のステップ1201でシート種とは、先のシート識別のステップ1201でシート種領域であるかどうかを判定する。この時、守秘領域であるかどうかを判定する。この時、守秘領域であるかどうかは、予め登録しているシート識別用辞書430を読み取るものとする。当該辞書430には、枠で示された領域ごとに守秘のレベルが具備されている。ステップ1203で守秘領域の座標を画像データとともに記憶装置に格納する。

【0036】図13は伝票画像に対して、使用者のアクセスレベルにより守秘領域の画像をマスクして表示する処理のフローである。先ず、ステップ1300で使用者のパスワードを入力する。そして、ステップ1301で使用者のアクセスレベルを図16に示す使用者アクセスレベルテーブル1600を用いて設定する。図16は使

用者アクセステーブルの説明図である。使用者名160 1, パスワード1602に対して、アクセスレベル16 03が格納されており、当該使用者に対応するアクセス レベルを設定する。次いで、ステップ1302で領域が つきるまで、ステップ1303,1304の処理を繰り 返す。ステップ1303では、領域ごとに設定されてい るアクセスレベルを領域アクセステーブル1500から 読み出す。図15は領域アクセステーブルを示す。当該 テーブル1500は、標準の伝票文書に対して、領域に 付与された識別番号1501ごとにアクセスレベル15 02が付与されている。そして、ステップ1304で使 用者のアクセスレベルが領域のアクセスレベルより強い かどうかの判定を行なう。もし、使用者のアクセスレベ ルが強い場合は、ステップ1305で当該領域のマスク を解除する。一方、その反対に、領域のアクセスレベル の方が使用者のアクセスレベルより強い場合は、ステッ プ1306で当該領域にマスクを設定する。以上の一連 の処理をステップ1302で領域がつきるまで繰返し行 なう。そして、ステップ1307で伝票画像を表示す る。ここでは、領域ごとに表示処理を実行し、領域にマ スクが設定されている部分画像はそのまま表示せず、例 えば、黒画像により塗りつぶした画像を表示する。領域 のマスクが解除されている部分画像はそのまま表示す る。本実施例では、蓄積した文書画像を表示、印刷する 場合、守秘項目についてアクセスレベルが付与されてお り、例えば、文書にプライベートな内容や、ビジネス上 重要な情報が記載されている場合に、文書の部分領域を 守秘レベルに応じて見ることができ、機密を保つことが できるという効果がある。

【0037】図14は伝票文書画像の表示の一例である。表示画面1400において、伝票の各項目に対応した領域1401、1402、1403、1404、1415、1405、1406、1407、1408、1409が設定される。この時、使用者のアクセスレベルに応じて、斜線部分1410、1411、1412、1413、1414において、守秘のためにマスクが設定されており、当該領域は黒く塗りつぶされることになる。

【0038】図17は伝票文書の読み取り結果によってバーコードを当該文書に印刷する処理フローを示す。ステップ1700で文書画像を入力する。入力した画像に対して、ステップ1701で伝票文書の種類を識別するシート識別を行ない、ステップ1702で文字認識によりシート内の領域の読み取りを行なう。そして、ステップ1703で当該認識結果に従ってバーコードの印字を紙文書の表面に行なう。

【0039】図18はバーコードにより文書を探索する 処理フローを示す。ステップ1800で、探索したい文 書の整理番号を入力すると、ステップ1801で整理番 号に該当するバーコードを設定する。そして、ステップ 1802で文書が尽きるまで、ステップ1803,18

04, 1805の処理を繰り返す。先ず、ステップ18 03では、伝票文書の紙送りを実行し、紙表面に印刷さ れているバーコードをステップ1804で読み取る。次 いで、ステップ1805において、読み取ったバーコー ドがステップ1801で設定されたバーコードと一致す るかどうかを判定する。もし、一致すれば、所望の伝票 文書であるとして、ステップ1806で選択スタッカに 格納する。もし、ステップ1805で一致しなければ、 ステップ1807で通常のスタッカに格納し、ステップ 1802で文書がつきるまで処理を繰り返す。本実施例 により原本にバーコードを印刷しているため、蓄積した 画像ファイルから所望の文書画像を表示、印刷するだけ でなく、原本である紙文書そのものをバーコードを用い て容易に探索することができるという効果がある。図1 9は伝票文書の種類を識別し仕分けを行なう処理フロー である。ステップ1900で伝票文書画像を入力し、シ ート識別用辞書1910によってステップ1901でシ ート識別を行なう。次いで、ステップ1902でシート 内読み取りを実行する。この時、予め登録しているフォ ーマットパラメータ1911と文字認識用辞書1912 を用いる。ステップ1903で、シート識別の結果であ るシートの種類によって伝票文書の仕分けを行なう。本 実施例により、従来人手により行なわれていた伝票文書 の仕分けを自動的に行なえるようになり、人手による作 業量を低減することができる。

【0040】図20はネットワークに接続された入力・ 仕分けステーションと認識ステーションの動作制御を説 明する図である。ネットワーク2000には入力・仕分 けステーション2002と認識ステーション2001が 接続されている。処理の制御は、先ず、認識ステーショ ン2001から全体システムの起動を入力・仕分けステ ーション2002に送る。入力・仕分けステーション2 002、この起動指令を受け、ホッパに設定された伝票 文書は入力装置2004のスキャナで画像を入力する。 画像は入力装置2004内にある画像プロセッサにおい てデータ圧縮され、ネットワーク2000を介して認識 ステーション2001に転送される。転送された画像は 伸張され、シート識別と読み取りを行なう。認識結果 は、ネットワーク2000を介して入力・仕分けステー ション2002に転送され、仕分け装置2005のスタ ッカを選択する。上記の処理をホッパの設定されている 伝票文書がなくなり、ホッパが空になるまで行なう。な お、スタッカが途中で満杯になった場合は、警告音を発 生し、一時停止する。ホッパが空になれば、入力・仕分 けステーション2002から終了指令を認識ステーショ ン2001に送信し、全体システムの処理が終了する。 【0041】図21は伝票文書の種類を識別し文字認識 を行い認識結果によって整理番号を紙文書に打番して仕 分けを行なう伝票文書処理のフローである。ステップ2

100で伝票文書の画像を入力する。ステップ2101

で伝票の種類を識別するシート識別を実行する。ステップ2102でシート内読み取りを行ない、当該認識結果によってステップ2103で整理番号を打番する。ステップ2104では伝票の種類、若しくは、記載内容によって仕分けを行ない所定のスタッカに格納する。

【0042】図22は整理番号を打番した伝票文書の一例である。伝票文書2200において、2201で示す整理番号を打番している。文書の端部の位置を検出しているため、当該整理番号は予め設定している座標位置に打番することができる。また、打番のためのインク色を指定色に切り換えることができる。

【0043】図23は入力・仕分けの構成を示す図であ る。ホッパ2300に伝票文書2320が設定されてい る。2304は計算機であり入力・仕分け全体を制御す るとともに。ネットワーク2321との通信制御を行な う。ホッパ制御部2310は、ホッバ機構部2315を 制御し、順次、紙をセンサ部2313に送る。センサ制 御部2311は画像信号をディジタル化し計算機230 4に送る。2314は打番機構であり、打番制御部23 12によって計算機2304から送られてきた整理番号 を印字する。仕分け機構部2316,2317,231 8は、計算機2304の指令により、送られてきた伝票 文書を所定のスタッカに格納するよう制御されている。 スタッカ2301、2302、2303には選択された 伝票文書が順次格納されている。各スタッカには文書の 満杯を検知するセンサ2307、2308、2309が 具備されており、満杯検知センサ制御部2306によっ てスタッカ満杯信号が計算機2304に送られる。23 05は警告音発生部であり、スタッカの満杯が検知され ると、警告音を発生し、計算機2304は処理を一時停 止する。

【0044】図24は伝票文書情報システムの画面の遷 移図の一例である。システム立ち上げ時のメイン画面 2 401を図25に示す。メイン画面2500は、選択項 目2501並びに選択項目の入力プロンプト2502を 具備している。入力方法指定画面2402によって、2 種類の入力を切り換えることができ、その一つはスキャ ナ入力画面2403、もう一つはファイル入力画面24 04で行なう。2405は画像表示画面であり、指定し た入力方法で画像を入力し、その入力画像を当該画面で 表示確認することができる。当該画面から、メイン画面 2401に戻ることができ、例えば、様式/書式識別画 面2406に遷移する。ここでは、図26に示すよう に、抽出した枠2601を画面2600に表示すること ができる。また、画面2602に示すように、抽出した 枠2603と辞書として具備していた枠2604を重ね あわせて表示することもできる。2408は認識結果画 面であり、文書画像と認識結果を同時に表示し、修正を 行なうことができる。図27は認識結果画面を説明する 図である。伝票文書2700に対して、上部画像表示エ リア2701と下部画像表示エリア2702を拡大して表示する。認識結果画面2710において、2711に上部画像を拡大して表示している。また、2712に下部画像を拡大して表示している。認識結果は2713の部分に表示しており、修正を対話的に行なうことができる。図28は、認識結果画面の他の実施例を説明する図である。本実施例では、認識結果画面を2画面として、第1画面2800には上部画像2801を表示し、認識結果は2802の部分に表示している。また、第2画面2803には、下部画像2804を表示しており、同じく認識結果を2805に表示し、対話的に修正を行なう。

【0045】図30はステップ304の妥当性検定の詳 細処理フローであり、レセプトを対象とした例である。 ステップ3000で、性別と請求内容の検定を行なう。 性別によって医療行為が異なるものがあり、性別により 検査や手術等の請求内容が該当するかどうかを検定す る。さらに、ステップ3001では、年齢と請求内容の 検定を行なう。ここでは、年齢により調剤や手術の内容 に制限があり、請求内容が当該年齢において適切である かの検定を行なう。さらに、ステップ3002では、年 齢と伝票様式の検定を行なう。ここでは、年齢により、 例えば、新生児、乳幼児、老人等により伝票の様式が予 め規定されており、シート識別で求めた伝票の様式が記 載されている年齢と合致するかどうかの検定を行なう。 また、ステップ3003で保険証番号と登録されている 氏名との一致を判定する。さらに、ステップ3004と 3005において、診療実日数及び合計点の検定を行な

[0046]

【発明の効果】文書画像から様式の種類を識別して記載 内容を読み取り、読み取り結果が記載項目ごとに登録し ている条件を満足するかどうかを判定するようにしてお り、複数の伝票文書を読み取ることができる。また、読 み取り領域を自動的に設定し文字認識を行い、記載内容 の妥当性を検定しており、伝票の記載内容を自動的に点 検することができる。認識結果により仕分け機構並びに 印刷機構を制御するようにしており、認識結果によって 整理番号若しくはバーコードを紙文書に印刷し、紙文書 の仕分けを自動的に行なうことができ、仕分け作業を低 減するという効果がある。守秘領域に対してアクセスの ためのパスワードを付与するようにしており、守秘領域 の画像をマスクして検索結果の表示、印刷を行なうこと ができ、システムの信頼性を向上させる効果がある。記 載内容例えば点数を読み取り、点数が一定値より大きい 文書のみ、その表面画像を蓄積するようにしており、記 憶領域を節約できるという効果がある。

【図面の簡単な説明】

【図1】伝票情報システムの構成を説明する図である。

【図2】伝票文售の処理フローを説明する図である。

【図3】伝票文書の画像入力、蓄積、検索、内容点検を 行なうシステムの処理フローを示す図である。

【図4】シート識別処理の詳細処理フローを示す図である。

【図5】位置ずれ・回転・伸縮を有する認識座標系を説明する図である。

【図6】 罫線座標を算出する過程の説明図である。

【図7】罫線交点算出並びに枠生成の処理過程を説明する図である。

【図 8 】文字行マッチングの処理方式を説明する図である。

【図9】読み取り領域設定処理の詳細処理フローの説明 図である。

【図10】読み取り領域内文字認識処理の詳細処理フローの説明図である。

【図11】伝票文書の選択蓄積を行なう伝票文書情報システムの説明図である。

【図12】伝票文書画像から守秘領域を登録する処理フローの説明図である。

【図13】使用者のアクセスレベルにより守秘領域の画像をマスクして表示する処理フローの説明図である。

【図14】伝票文書画像の表示の一例を説明する図である。

【図15】領域アクセステーブルの説明図である。

【図16】使用者アクセスレベルテーブルの説明図である。

【図17】認識結果を用いバーコードを文書に印刷する 処理フローの説明図である。

【図18】バーコードにより文書を探索する処理フロー の説明図である。 【図19】伝票文書の種類を識別し仕分けを行なう処理 フローの説明図である。

【図20】ネットワークに接続されたステーションの動作制御の説明図である。

【図21】認識結果によって整理番号を打番し仕分けを 行なう伝票文書処理フローの説明図である。

【図22】整理番号を打番した伝票文書の一例を示す図である。

【図23】入力・仕分けの構成を示す図である。

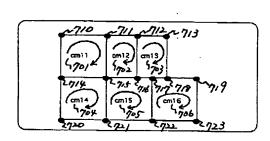
【図24】伝票文書情報システムの画面の遷移図である。

【図25】メイン画面を示す図である。

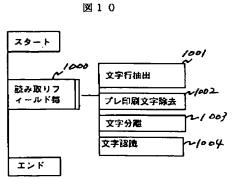
【図26】枠の表示画面を示す図である。

【図27】認識結果画面を説明する図である。

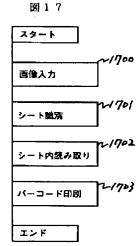
【図28】認識結果画面の他の実施例を説明する図である。

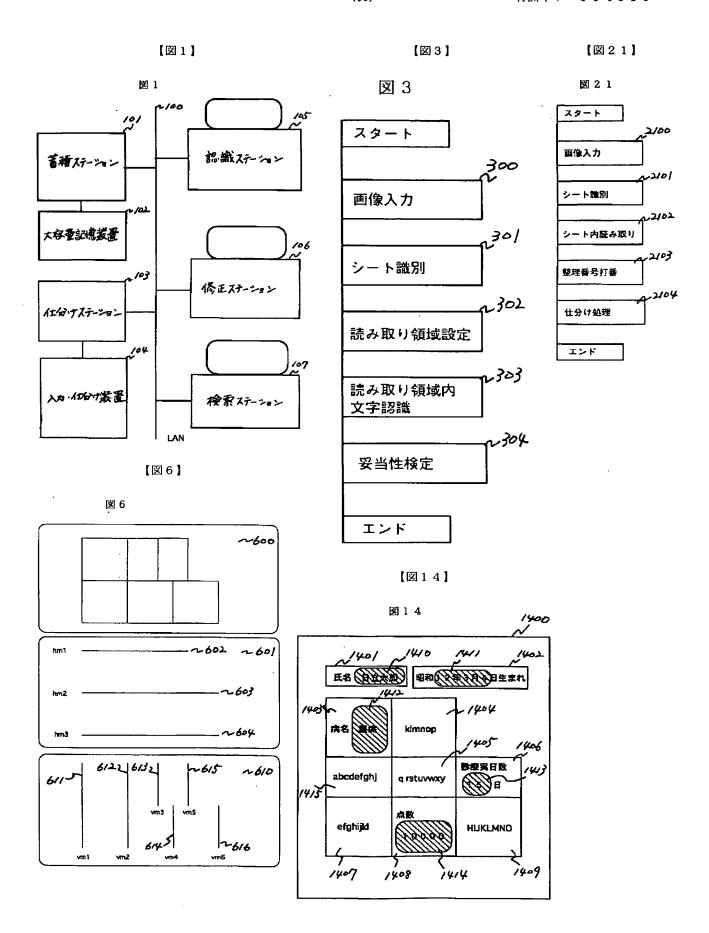

【図29】文字行の相対的な位置関係を説明する図であ ろ

【図30】妥当性検定の詳細処理フローである。 【符号の説明】

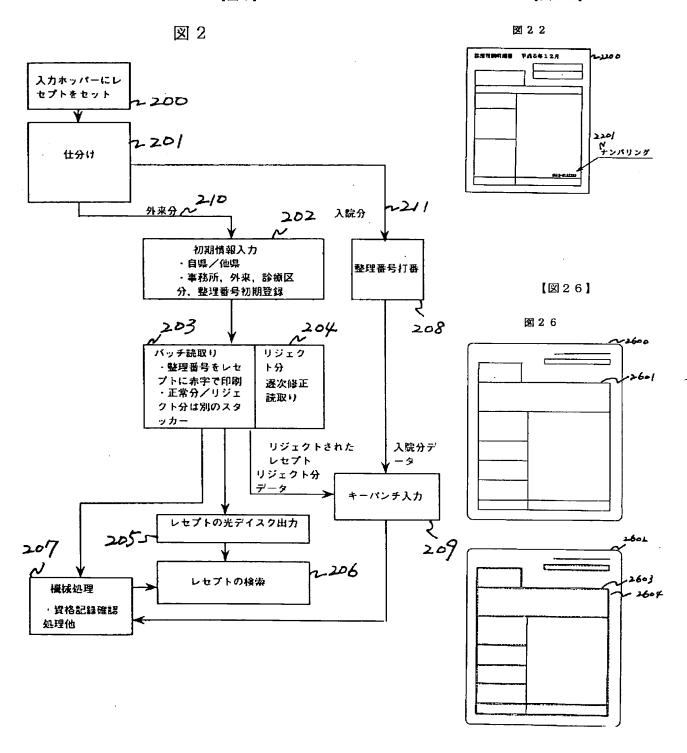

100…ネットワーク、101…蓄積ステーション、105…認識ステーション、103…入力・仕分けステーション、301…シート識別処理ステップ、304…妥当性検定ステップ、410…枠マッチングステップ、411…文字行マッチングステップ、910…フォーマットパラメータ、1306…領域のマスク設定、1703…バーコード印刷ステップ、1804…バーコード読み取り、2103…整理番号打番、2104…仕分け処理。

【図7】


図 7

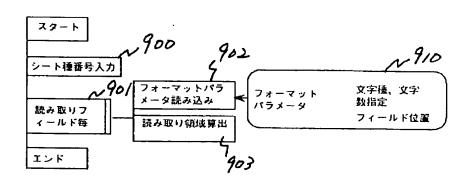


【図10】


【図17】

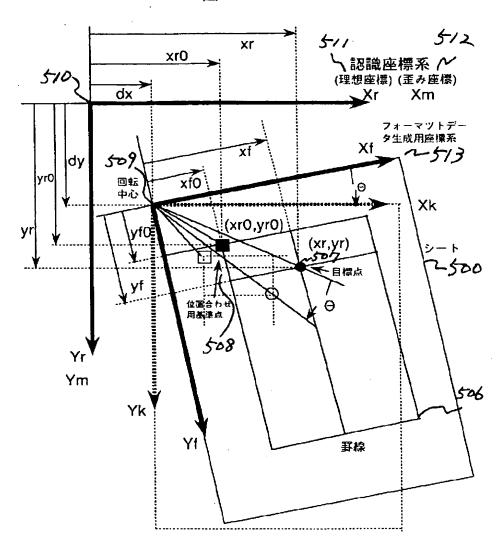
【図2】

【図22】



【図4】 【図30】 図 4 図30 スタート スタート 3000 400 性別と請求内容の検定 ノイス除去 2401 年齢と請求内容の検定 野線抽出 2402 2002 420 傾き算出 年齢と様式の検定 2403 画像回転 標準帳票画像入力 र००३ V404 罫線抽出 保険証番号と氏名の検定 2 405 入力位置の画面 文字行抽出 座標の指定 診療実日数の検定 2 406 基準点算出 位置補正, 2407 枠交点算出 回転補正 合計点の検定 408 正規化 2409 エンド 枠生成 -410 枠マッチング シート識別 枠位置、文字行位置 用辞書 文字行マッチング 411 シート種番号決定 412 7 430 抽出位置出力 シート種番号出力

【図9】


図 9

エンド

【図5】

図 5

【図15】

【図16】

图 1 5

領域番号(打つ	/ アクセスレベル ~1502	000اس
1	0	
2	1	
3	3	
4	2	

図16

使用者名 /60	1607127-1	1603 P7 talvan	1600
shima	abc	0	
marukawa	bod	2	
koga	cde	3	
nakashima	def	4	

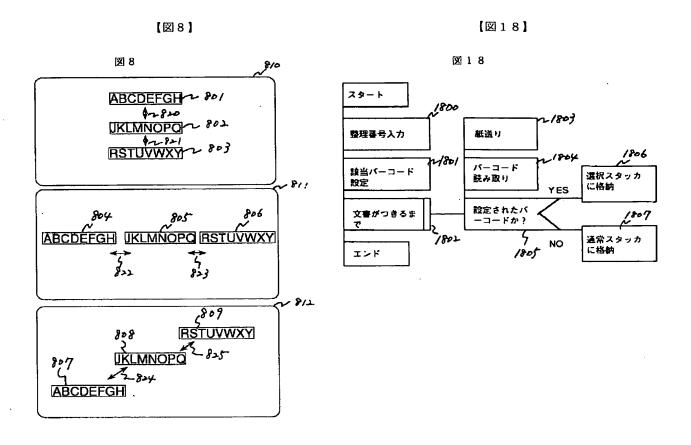
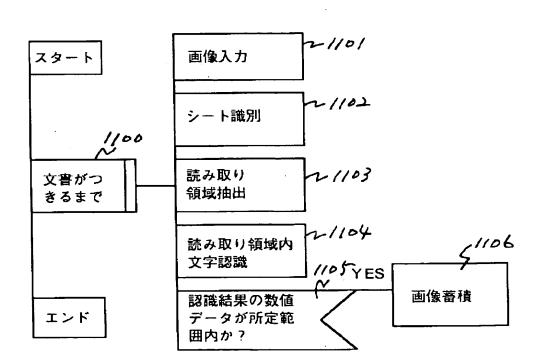
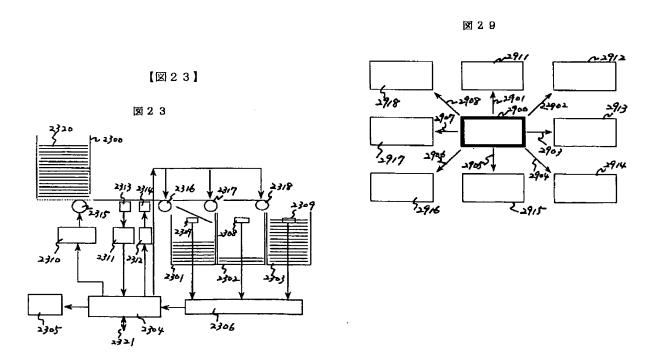
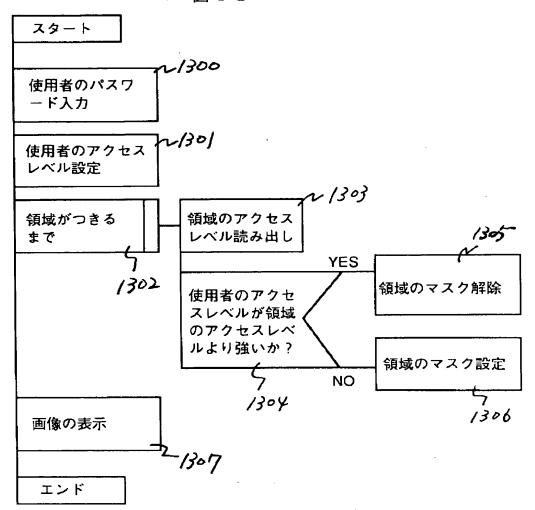



図 1 1



【図11】

【図19】 【図12】 図 1 9 図 1 2 スタート スタート 21900 画像入力 1200 画像入力 シート識別用辞書 シート識別 フォーマット シート識別 パラメータ シート内 読み取り 文字認識用辞書 V/202 守秘領域の抽出 仕分け エンド 守秘領域の座標格納


エンド

【図29】

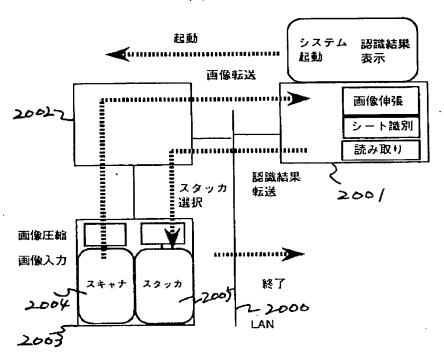
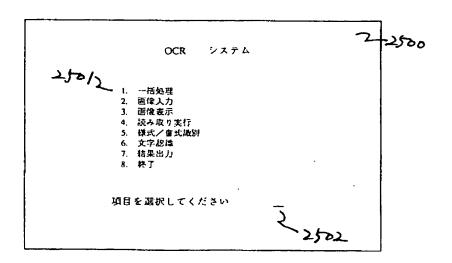
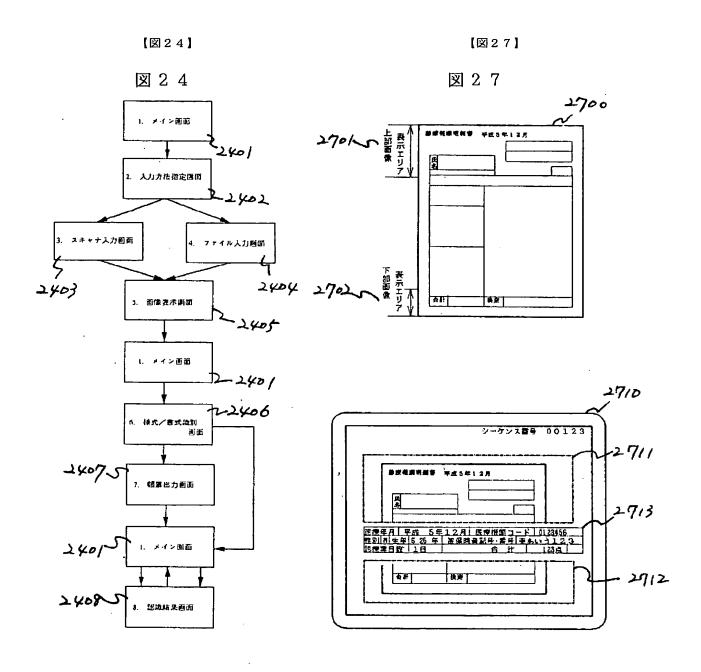
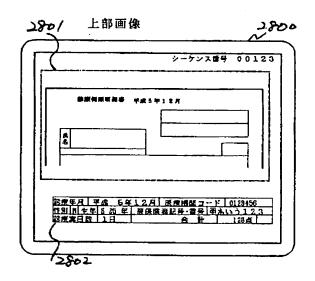

【図13】

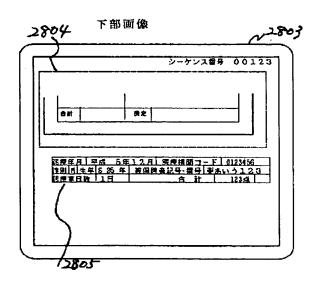
図 1 3


【図20】


図 2 0

【図25】


図 2 5



【図28】

図 2 8

フロントページの続き

(72)発明者 古賀 昌史

東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内

(72)発明者 中島 和樹

東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 門田 彰三

神奈川県小田原市国府2880番地 株式会社 日立製作所ストレージシステム事業部内

(72)発明者 栗野 清道

神奈川県小田原市国府2880番地 株式会社 日立製作所ストレージシステム事業部内

(72)発明者 杉本 建行

神奈川県小田原市国府2880番地 株式会社 日立製作所ストレージシステム事業部内 【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第3区分

【発行日】平成13年2月9日(2001.2.9)

【公開番号】特開平7-114616

【公開日】平成7年5月2日(1995.5.2)

【年通号数】公開特許公報7-1147

【出願番号】特願平5-262100

【国際特許分類第7版】

G06K 9/00

G06F 19/00

[FI]

G06K 9/00 K

G06F 15/22

【手続補正書】

【提出日】平成12年3月28日(2000.3.28)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】伝票文書を画像として入力し、前記画像の 蓄積、検索、及び内容点検を行なう伝票文書情報システムにおいて、前記伝票文書の様式の種類を識別する手段と、前記様式の種類に応じて読み取り領域を抽出する手段と、読み取り領域を設定し文字認識を行なう手段と、前記文字認識結果のデータを基に記載内容の妥当性を検定する手段とを有することを特徴とする伝票文書情報システム。

【請求項2】請求項1記載の伝票文書情報システムにおいて、前記伝票文書の様式の種類を識別する手段は、前記伝票文書の種類をキー入力する手段と、様式の種類を予め辞書データとして格納する手段と、入力された明細書文書より様式データを抽出する手段と、前記辞書データと抽出した様式データとを照合する手段を有し、前記キー入力した前記伝票文書の種類により、辞書データとの照合を限定することを特徴とする伝票文書情報システム。

【請求項3】伝票文書を画像として入力し、前記画像の 蓄積、及び検索を行なう伝票文書情報システムにおい て、伝票文書の種類を識別し文字認識を行なう手段と、 前記認識手段の認識結果によって整理番号を紙文書に打 番する手段と、<u>前記伝票</u>文書の種類に従って紙文書の仕 分けを行なう手段とを有することを特徴とする伝票文書 情報システム。

【請求項4】伝票文書を画像として入力し、前記画像の 蓄積、及び検索を行なう伝票文書情報システムにおい て、伝票文書の種類を識別し文字認識を行なう手段と、 <u>前記</u>認識手段の結果に従ってバーコードの印字を紙文書 の表面に行なう手段とを有することを特徴とする伝票文 書情報システム。

【請求項5】伝票文書を画像として入力し、前記画像の蓄積、表示、及び検索を行なう文書情報システムにおいて、<u>伝票文書</u>の複数領域を表示領域として設定する手段と、<u>前記</u>複数領域内において読み取り領域を抽出する手段と、<u>佐票文書を認識する手段と、前記</u>表示領域の画像と<u>前記認識手段の</u>認識結果を画面に同時に表示する手段と、<u>前記認識結果を画面を介して修正するときに読み取り領域の画像を拡大表示する手段とを有することを特徴とする文書情報システム。</u>

【請求項6】伝票文書を画像として入力し、前記画像の蓄積、検索、及び内容点検を行なう伝票文書情報システムにおいて、伝票文書の様式の種類を識別する手段と、前記様式の種類に応じて守秘内容の記載された領域を抽出する手段と、前記守秘領域の画像をマスクして表示する手段と、使用者に付与されたパスワードのレベルにより前記マスクの解除、及び設定を行なう手段とを有することを特徴とする伝票文書情報システム。

【請求項7】伝票文書を画像として入力する伝票文書情報システムにおいて、入力された伝票文書画像から枠線を抽出する手段と、標準的な伝票文書の枠線を登録する手段と、抽出した枠線と類似する枠線を登録データから選択する手段と、前記選択した登録枠線と抽出枠線を画面に同時に表示する手段とを有し、伝票文書を登録することを特徴とする伝票文書情報システム。

【請求項8】伝票文書を画像として入力し、前記画像の 蓄積、検索、及び内容点検を行なう伝票文書情報システムにおいて、伝票文書の読み取り領域を抽出する手段 と、読み取り領域内において文字認識を行なう手段と、 前記認識手段の認識結果の数値データが予め設定された 範囲内にあるかどうかを判定する手段と、当該判定結果 に従って伝票文書を蓄積する手段とを有し、当該範囲内にあると判定された伝票文書画像を選択し、<u>前記選択された</u>画像のみを蓄積<u>又は</u>検索することを特徴とする伝票文書情報システム。

【請求項9】ネットワークを介して<u>伝票文書</u>の仕分けを行なう文書情報システムにおいて、<u>伝票</u>文書の表面画像を入力する入力ステーションと、入力した画像の種類を識別する認識ステーションと、<u>前記認識ステーションの</u>識別結果に従って紙文書を区分する仕分けステーションと、画像を保管する蓄積ステーションを備え、<u>前記</u>ネットワークを経由して画像データ、<u>前記</u>種類<u>に関する</u>データ、並びに仕分け制御情報を伝送することを特徴とする文書情報システム。

【請求項10】伝票文書の画像を入力し、前記伝票文書

画像を認識して種類を識別する仕分けステーションであって、紙文書を設定するホッパと仕分け後の紙文書を格納するスタッカを有し、スタッカが一杯になると警告音を発生し仕分け処理を一時停止することを特徴とする仕分けステーション。

【請求項11】伝票文書を画像として入力、前記画像の 蓄積、検索、及び内容点検を行なう文書情報システムに おいて、文書画像とその整理番号を格納する手段と、前 記整理番号を指定することによって整理用バーコードを 求める手段と、<u>伝票</u>文書の表面のバーコードを読み取る 手段と、指定されたバーコード<u>が</u>付与された文書を選択 する手段とを有することを特徴とする文書情報システ